안녕하세요! 학교가는길입니다! 😊
오늘 소개해드릴 수학 놀이는 바로 [모 아니면 도]입니다!
전략이 매우 중요한 놀이입니다!
바로 시작할게요!
준비물
활동지, 문제ppt (첨부파일 참고)
관련 성취기준 : [6수01-13] 소수의 곱셈의 계산 원리를 이해한다.
[6수01-16] 소수의 곱셈과 나눗셈의 계산 결과를 어림할 수 있다.
적용 단원 : 5학년 2학기 4단원 소수의 곱셈
놀이 방법
[모 아니면 도]는 개인전이며 모둠 내 대결과 전체 대결을 혼합한 놀이입니다!
먼저 놀이가 시작되면 선생님께서 하나의 수를 제시합니다.
학생들은 활동지에 있는 16개의 수 중 2개를 골라 곱셈식을 만들어주세요.
예를 들어 위와 같은 곱셈식을 만들었다고 가정해봅시다.
각자가 만든 곱셈식은 활동지에 적어주시고, 모둠 내 친구가 모두 결과를 내었다면
그 결과를 모둠 친구들과 공유합니다.
이때, 모둠 내에서 목표 수와 가장 가까운 곱셈식을 만든 친구는 10점을 획득합니다.
반대로 모둠 내에서 목표 수와 가장 먼 곱셈식을 만든 친구 역시 10점을 획득합니다!
즉, 가장 가깝거나 가장 먼 곱셈식을 만들어야 하는것이지요!
점수를 더 높일 수 있는 방법이 있습니다.
바로, 반 전체에서 목표 수와 가장 가깝거나, 가장 먼 곱셈식을 만든 친구는 10점의 추가 점수를 얻을 수 있습니다!
즉, 한 라운드 당 최대 20점까지 얻을 수 있는 것이죠!
전략과 눈치가 필요한 게임이 되겠습니다!
이때, 중요한 조건이 하나 있습니다.
바로, 한 번 사용한 수는 다시 사용할 수 없다는 것입니다.
그러니, 라운드가 지날수록 사용할 수 있는 수는 줄어들겠죠?
이러한 방법으로 8라운드까지 진행하여 가장 점수가 높은 친구가 승리하는 놀이가 되겠습니다!
만약 놀이 설명을 영상으로 보고 싶다면?
첨부파일
본 자료는 "학교가는길"에서 제작한 소중한 자료입니다. 무단 수정 및 재배포는 금지하고 있습니다.
단, 교실 내에서 교육을 위한 수정 및 사용은 언제든 환영합니다!
어디선가 누군가에게 선한 영향을 끼치길 희망합니다.
by 학교가는길
'놀이 수학 > 5학년' 카테고리의 다른 글
[놀이수학] 5-1-4 약분과 통분 ㅣ 분수 루미큐브 (0) | 2022.02.20 |
---|---|
[놀이 수학] 5-2-5 직육면체ㅣ조금 특별한 윷놀이 (0) | 2021.12.08 |
[놀이수학] 5-2-3 합동과 대칭ㅣ합선점 우노 (0) | 2021.10.09 |
[놀이수학] 5-2-2 분수의 곱셈ㅣ수학 마피아 게임 (0) | 2021.09.30 |
[놀이 수학] 5-2-1 수의 범위와 어림하기ㅣ운수 좋은 날 (0) | 2021.09.26 |
댓글